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Detection and Identification of Structural Damage from
Dynamic Response Measurements

J.C.8. Yang, T. Tsai, W.H.Tsai and R.7Z. Chen

ABSTRACT

The random vibrational response of a structural
svstem contains the characteristic signal of the struc-
ture. Using proper signal processing techniques, the
characteristic signal can be retrieved from the ran-
dom response. Structural damages can then be identi-
fied by studving the changes of the characteristic
signal.

Two signal processing techniques are being used
to retrieve the structural characteristic signal from
the random responses. The first is in the frequency
domain, using FFT technique to obtain the averaged
frequency response of the system. Followed by a curve-
fitting computer program, the system's eigenvalues and
eigenvectors are resolved from the frequency response
curves. The second is in the time domain, applying
the random decrement technique to convert the random
response to the random decrement free decay signature.
Using an auto-regressive method, the system's eigen-
values and eigenvectors can be determined from the ran-
dom decrement signature.,

Cross random decrement signature between two po-
sitions cerrelates the random responses of the two.
If an array of cross random decrement signature be-—
tween a number of positions in the structure is evalu-
ated, the location of the damage can be determined
following proper system identification processes.

The system identification technique we developed
uses state equation formulation. Once the system's
eigenvalues and eigenvectors are determined, the
svstem's mass, stiffness and damping matrices can be
obtained. The changes of the matrix elements will
provide the indication of the location and severeness
of the structural damage.

These techniques have been verified with a number
of theoretical and experimental tests. A result from
13.8 scale model offshore platform in soil including
the effect of the piles is also presented.

1. INTRODUCTION

Complex structural systems such as flight vehicles,
naval ships and offshore platforms are exposed to se-
vere wind or wave loading which over an extended per-
iod can lead to fatigue failure. Initiation and prop-
agation of cracks change the structural response of the
system which manifests itself in a change in the dyna~
mic equations of motion. 1In principle, if one can
completely determine the system's parameters in the
dynamic equations, then the nature as well as location
of the damage occurring in a structural system are
identified. For a structure the complete set of system
parameters is the mass, stiffness and damping matrices.

The eigenvalues of a structure system are associa-
ted with the modal frequencies and damping, and the
eigenvectors with the mode shapes. The information of
the modal frequencies, damping and mode shapes are con-
tained in the response signals. To identify the svs-
tem's parameters from the response measurements, there
are generally two approachesone can follow: (1) re-
trieve the modal frequencies, damping and model shape
vectors from the measured reaponses first. Then, re-
construct the mass, stiffness and damping matrices
from the retrieved eigenvalues and eigenvectors; and
(2) resolve the mass, stiffness and damping matrices
directly from the measured responses.

For complex systems, the number. of vibration modes
contained in the response signal is high. Direct,
simultaneous resolution of the mass, stiffness and
damping matrices from the measured response is likely
to be inaccurate, especially in the presence of random
noise. Since the damages are often too small to be
detected, the accuracy of the calculated eigenvalues is
of crucial importance to differentiate the changes.
With proper filtering process, it is possible to ac-—
curately resolve the eigenvalues a few modes at a
time. In present work, we adopt the first approach to
identify the structural system's parameters for the
purpose of damage detection.

In this paper, mathematical schemes as well as
computer algorithms are develoned and tested for a few
simple systems from the measured responses. Two
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algorithms are used to retrieve the system's eigenval-
ues and eigenvectors from the random dvnamic responses.
One is in time domain, the other in frequency domain.
After svstem's eigenvalues and eigenvectors are ob-
tained either from time domain technique or from fre-
quency domain technique, another algorithm is used to
reconstruct the mass, stiffness and damping matrices
from the eigenvalues and eigenvectors. The frequency
domain technique uses an FFT spectrum analyzer to cal-
culate the system's transfer function, which requires
the measurements of both the output response and the
input. When the system is randomly ewxcited, the trans-
fer function is averaged over many samples. A curve
fitting algorithm is then used to determine the eigen-
values and eigenvectors from the transfer functions.
In time domain technique, random decrement and cross
random decrement method are used to retrieve the sys-
tem's free decay responses from the random dynamic
responses. The excitation forces are assumed to be
purely random and have zero average values. FEigen-
values are calculated from the free decay responses
using auto-regressive method and eigenvectors calcu-
lated using a linear least square curve fit method.

Numerous authors have studied the various tech-
niques mentioned above: the frequency technique (1-3),
time domain technique (4-5), random decrement technique
(6-9), auto-regressive technique (10), as well as the
system identification technique (l1). Our primary
goal here is to study the feasibility of detecting
small damages in structures using all these computer
algorithms. Some test results are presented which
include a two-degree-of-freedom analog computer system,
a cantilever beam system.

Response measurement has also been performed on a
1/13.8 scale model of an offshore platform. Time do-
main eigenvalue retrieval technique using random decre-
ment has been applied to determine the modal frequen-
cies and damping of this offshore platform structure.

2. MATHEMATICAL MODEL OF THE SYSTEM IDENTIFICATION
TECHNTQUE

Consider a structural system which can generally
be represented by an N degree-of-freedom linear system.
The dvnamics of the svstem is governed by its equation
of motion

(M1 (X1+1cCc)IX)+(RI[X)=01¢1,

where [x], [x], [%] are the displacement, velocity and
acceleration column vector of degree N, respectively.
[£] is the force column of degree N. [M], [c], [K]
are the NxN mass, damping and stiffness matrices, re-
spectively. The exercise of the system identification
involves the identification of [M], {C], [K] matrices
from the known responses [X], [X], [X], and the known
forcing function [f].

Adding a trivial differential equation
(M1 X]~-IHI[X]=0

to the above equation, we obtain a set of state equa-
tions which still describe the motion of the structur-
al system,
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After Laplace transformation, we obtain

1B (s) ] = [Dls+ E]]

where

1B 1 lqa)l=[q)],

is the system
mat rix.

It can be proved that [D] and [EJ can be repre-
sented by the eigenvalues, Py, and eigenvectors, [y 1,

of the system matrix which are determined by the homo-
geneous equation

[B(2) ]I 7l =0

wWhen [M], [c1, [K] are all symmetric, the expressions
are '

fpl=ty1 ™1y v

telafy )T py1y !

where T = [ Fy» Foo Y ...;;. Iy ] is the eigen~
vector matrix - -

. is the eigenvalue
0 . *p matrix.

it can also be shown that the system's transfer func-
tion can be represented by the eipgenvectors and



and eigenvalues,
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The above derivation states the fact that if one
can detérmine the eigenvalues and eigenvectors of a
system, the mass, stiffness and damping matrices of the
system are simply the products of the eigenvalue and
eigenvector matrices.
can be obtained from the measured system response data
for a known force input using frequency domain tech=
nique or a time domain technique.

3. SYSTEM IDENTIFICATION TECHNIQUE

Implementation of the Mathematical Model in the
System Identification Technique is illustratred in
Figure 1. The random vibrational response of a struc-
tural system contains the characteristic signal of the
structure. Using proper signal processing techniques,
the characteristic signal can be retrieved from the
random response. Structural damages can then be iden-
tified by studying the changes of the characteristic
signal.

Two signal processing techniques have been devel-
oped to retrieve the structural characteristic signal
from the random responses. One technique analyzes the
structure signal in the frequency domain, the other in
the time domain.

3.1 FREQUENCY DOMAIN TECHNIQUE

Structural responses from a known random force
input are collected into a Fast Fourier Transform
(FFT) analyzer to obtain the frequency response in
digital form. The digitized frequency responses are
curve fitted with a computer program to yield the
eigenvalues and eigenvectors. The frequency domain
curve fitting program uses a linear-least square meth-
od to find the best fit of the collected system's
transfer function to the following theoretical expres-~
sion

X *
H(s8) = % ¢ x + % )
k=1 *TP BTR

where P and a, are the poles and residues of the
transfer function. The poles are system's eigenvalues
and the residues related to the eigenvectors. After
the eigenvalues and eigenvectors are found, the system
identification techniques are applied to find the mass,

stiffness and damping matrices.
3.2 TIME DOMAIN TECHNIQUES

The time responses of a structure system when ex-
cited by a random forcing function is digitized and
processed with random decrement technique. The random
decrement signature represents system's characteris-
tics from which the system's modal frequencies and
damping values can be determined.

The impulse response of a structure system con-
tains the characteristic time function of the system.
The frequencies and damping values of the impulse

The eigenvalues and eigenvectors,

response are the eigenvalues of. the system. And, the
amplitudes of the impulse responses at differemt loca-
tions are the eigenvectors of the system. If one as-
sumes that the random decrement signatures represent
the impulse response functions of the system, then

the frequencies, dampings and relative amplitudes of
the random decrement signatures may be used to repre-
sent the eigenvalues and eigenvectors of the system.

To accurately retrieve the eigenvalues and the
eigenvectors, a time domain curve fitting procedure is
applied to the random decrement signatures of the
structure. First, the frequency and damping value of
a random decrement signature are determined using the
auto-regression method. After the frequency and damp-
ing are determined, the random decrement signatures are
curve fittred with the follewing expression to determine
the amplitudes of the signatures.

M -wi§it
‘x(t) = a + ifl °; e sin (mit +‘¢i)

where wj and {4 are natural frequency and damping ra-
tio of the i-th mode of the system. a4 and 1i are

the amplitude and phase angle. Again the curve fitting
procedure uses the least square method.
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FIGURE 1 SYSTEM IDENTIFICATION TECHNIQUE

4. COMPUTER PROGRAM DEVELOPEMNT

A computer program was developed to implement the
System I[dentification Technique illustrated in Figure
1. The Program includes a frequency domain curve
fitting program, a random decrement program, a time
domain curve fitting program and a system identifica-
tion program. The random decrement program, written
in 780 Assembly language, is implemented in a
CROMEMCO microcomputer. The resulting random decre-
ment signature is transferred to the UNIVAC 1180 com-
puter, where the other three.programs are located, for
subsequent processing.



The input to the frequency domain curve fitting
program is the experimental transfer function which is
collected using a NICOLET FFT Spectrum analyzer in
which many instantaneous transfer functions are aver-
aged. The averaged transfer function is transferred
to the UNIVAC computer through an interface microcom-
puter svstem. When the frequency domain curve fitting
program receives the experimental transfer function
from the spectrum analyzer and the time domain curve
fitting program receives random decrement signatures
of a structure from the random decrement microcomputer,
both programs reduce the input data to yield the sys-
tem's eigenvalues and eigenvectors. Then, the system
identification program will pick up these eigenvalues
and eigenvectors and reduces them to the system's
[M][C][K] matrices.

4.1 PERFORMANCE TEST OF THE TIME DOMAIN ALGORITHM
The time domain approach uses an auto-regressive
curve fitting method to resclve frequencies and damp-
ing values of a multidegree-of-freedom signal simul-
taneously. It was successfully tested with theoreti-
cal data of the type:

M
f(t) = =T
k=M

t -r

.‘Tk kt :
Ae cosw t +. Be sinu t, He-3

the signal simulates the free decay response of a struc-
ture or the random decrement signature of the structur-
al random response. Given various values of Yk, vk,
the time function f(t) is fed into the program. The
program then resolves the frequencies and dampings from
the time function f(t). The results are compared with
the originally given values of frequencies and damp-
ings. Many cases have been tested including different
sampling rates, time, length and modal separations.

Due to the numerical truncation error plus the random-
ness of the real system, it is necessary to test the
performance of the time domain eigenvalue retrieving
algorithm under noisy condition. A few test cases have
been conducted whose results are presented below.

A theoretical signal which consists of three sinu-
soidal waves with frequencies 1456.3, 2427.2, 3398.1
Hz and damping rations 1% for all three modes was con-
volved with a random white noise signal collected from
an analog noise generator with a sampling rate of
9703.74 Hz. The result simulates the random response
of a structure. After the auto-regression of the ran-
dom decrement signature, the frequencies and damping
ratios were resolved. The accuracies in the frequency
calculation for all three modes arc very good, all
within 1%Z. However, the calculations of the damping
ratios are less accurate. The error of the damping
ratio of the first mode is 107%, second mode 15%, and
third mode 85%. This is due to the fact that the
added noise is not a white noise so that it can not be
completely removed by the random decrement process.
The modal separations of this signal are considered
high. The three frequencies are at 15%, 25% and 35% of
the sampling rate. :

In the cases where many modes cannot be resolved
simultaneously, filtering process helps reduce the
number of modes and improve the accuracy of the eigen-
value retrieval. A signal of 291.26 Hz, 485.44 Hz ,
679.61 Hz (3%, 5%, 7% of the sampling rate) and damping

ratio 1% was convolved with the random analog noise and
filtered with filter band pass from 4.5% to 5.5% of the
sampling rate. The filtered signal contains the domi-
nant mode of 485.44 Hz. Other spectral modes attribute
to the filter and the noise. When the three mode auto-
regression algorithm was applied to the filtered signa-
ture, the 485.44 Hz distinct mode was picked out and
the other two modes were used as error compensation.
Due to the presence of the noise, the frequency and
damping ratio obtained by using auto-regression method
depends on the sampling rate and the number of data
points used. Based on previous experimental experi-
ence, optimum sampling rate was found to be 3.5 - 7
times the frequency of interest and optimum number of
data points was near 128. Using a sampling rate 3.33
times the frequency, the number of data points 128, the
above filtered signal was resolved by the three mode
auto-regression algorithm. This resulted in a fre-
quency 482.86 Hz and damping ratio of 1.025%. Compared
to the theoretical value, the frequency has 1% accuracy
and the damping ratio 2% accuracy. Hence we believe
the time domain algorithm accurately resolves the fre-
quency and damping values of a multidegree-of-freedom
system.

4.2 PERFORMANCE TEST OF THE FREQUENCY DOMAIN
ALGORITHM ‘

The frequency domain curve fitting program has
successfully tested with theoretical frequency response
functions generated by the following formula:

¥

F(s) = b
k== BT Py

Initially, the eigenvalues p, and the residues ap were
assigned. The generated frequency response functions
were fed into the frequency domain curve fitting pro-
gram. The program resolved.the residues and poles

ay, Py of each mode. These values when compared to the
original assigned values are very accurate.

4.3 PERFORMANCE TEST OF THE SYSTEM IDENTIFICATION
ALGORTTHM '

In order to demonstrate the ability of the comput-
er program to retrieve the system identification para-
meters from theoretical response data, a simple comput-
er experiment was conducted. Spring mass systems con-
sisted of two or three degrees of freedom were ana-
lyzed., The theoretical response to a random loading
was calculated for known values of mass, stiffness, and
damping values. The system's eigenvalues and eigen-
vectors were then retrieved using the frequency domain
technique with the theoretical response as input.

Mass, stiffness, and damping matrices were determined
using the System identification algorithm and compared
with the original input values. Excellent agreement
was obtained for all cases studied. This demonstrated
that the technique can accurately retrieve the system
identification parameter even for large variations in
mass, stiffness and damping parameters.

5. ANALOG COMPUTER EXPERTMENT .
- In order to further demonstrate the feasibility of
retrieving the System Parameters from response data,
the analog computer was used to simulate response

from real systems. An analog computer system was used
to simulate the dynamic response of a two-degree~of-
freedom spring--mass-dashpot system as shown in Figure



2. Svstem input parameters can be easily adjusted by
changing the resistor values of the potentiometers in
the analog computer circuit. The response signals of
the analog computer contains circuit noise which sim-
ulates the natural white noise contained in the dynam-
ic responses of the real system.

Spring-mses system in the anslog computer simulation

LIouer e

[ S

TABLE 1
Poles snd residues of the velocity tranefar funcrions

(1st stage damsge)

i ) | tat Mode 2ud Hode
il Frequency : 15.78 50.22

(rad/aec) ‘

Dawping Ratio i 0.1802 0.1352

Residues 0.04227 + §0.006686 | -0.04111 - 10.004233
5" Frequesey 15.79 $0.23

(rad/sec) |

Demping Ratie 0.179 0.1341

Aesidues 0.04426 + i0.008879 | 0.01880 ~ 10,000418

The dynamic equations of the spring-mass-dashpot
system of Figure 2 are

where @], M2 are masses, c,, c,, ¢, damping constants,

k., k2 k, stiffness, f(t) is fhe Input forcing func-
tion 4 mass 2. Using k, = 1500 1b/ft, k2 = 6000
1b/ft, ="8 slugs,

ko, = 1500 1b/ft, m, = 4 slugs, m
c, =10 ib—sec/ft, c, = 26 lb-sec/ft, c, = 30 lb-sec/
fg. and applving a random input forcing” function to
mass 2, the displacement transfer functions at mass |
and 2 were obtained as shown in Fig. 3 and Fig. 4
respectively.  These transfer functions were fed Into
the frequency domain eigenvalue retrieving program
from which the residues and poles of the system trans-
fer functions were found as shown in Table 1. When
the eigenvalues and eigenvectors were fed into the
system identification program, the system's [M][C][K]
matrices were identified, as shown below

~0,000284

28.4
C =
~19.6

7477

3.944
M=

~5933

~0.00492
slugs
7.88

-19.6]
50.8

-5933 ]
7452

1b-sec/ft

1b/fc

The exact values of the system's [M][C][K] matrices
from theoretical calculations are

4.0
“theo. -

0

30.0
(o4 -
theo. [;20.0

. 7500
xtheo =l
* -6000

o)

slugs
-20.0 ,
1b/eec/ft
50.0
=-6000
1b/ft
7500

The comparison between the identified and theoretical
values of the M][c]{K] matrices are within 5%. This
again demonstrated the ability of the System Identifi-
cation Technique to accurately retrieve D&]BI][K}
matrices from the response data.

In order to demonstrate the ability to detect
system changes from simulated damage, three stages of

damage were simulated,
characteristics of the system just analyzed.

Stage 1 was considered to have

Stages

2 and 3 were as given below:

Stage 2 Daﬁagg:

€ =40 lb-sec/ft, €,=20.0 lb-sec/ft,

my = 4.0 slugs, m, = 8.0 slugs

c3=30.0 1b-sec/ft

k1=1500 1b/ft, k2=3000 1b/ft, k3=1500 1b/ft

Stage 3 Damage:

my o= 4.0 slugs, m, = 8.0 slugs

¢ =10 lb-sec/ft, c2=20.0 1b-sec/ft, c3=30.0 1b-sec/ft

k1=1500 Ib/fe, k2=3000 1b/fe, k

3=1500 1b/ft

The poles and residues of the velocity transfer func-
tions for the 2nd and 3rd stages of damage are listed

in Table 2 and 3.
are shown below.

The corresponding [M]{c][K] matrices
Again it is demonstrated that the

System Identification Technique using the frequency
domain alpgorithm can accurately retrieve the [M][c]Ik]

matrices {rom response data.

Moreover, changes simu-

lating various stages of damage are detectable,

C



21nd stage damage:

4.0 0
i -
theo. 0 2.0

slugs
60 -zo.o]
[ - X 1b-sec/tt
theo, -20.0 $0.0
[ 7500 ~6000
13 1b/fe
theo. 5000 7500
3.944 -0.001 929
- aluge
~0.00334 7.934
59,139 -19.628 R
Ce ‘. lb-eec/ft
~19.428 - 49.208 .
T494,0 -5963.8
| 3 1b/tt
~59631.8 7520.8
Jrd stage damage:
4.0 ]
L3 - slags
theo. 0 8.0
~-10
¢ - 3 1b-sec/tt
theo. -20 50
4506 =-3000 1
x - ] 1b/fe
theo. _3000 4500
. 3,938 -0.0117
X slugs
. -0.0058 7.878
28,74 -19.52
C= 1b-sec/ft
~19.52 49.90
4509 -2970
| 30 16/t
~2970 4311
TABLE 2

Poles and Residues of the Yelocity Tramsfer Functions

{2nd Stage Damage)

let Mode 2ud Mode
i) Frequeacy 15.89 50,38
(rad/nec)
Dempiog Ratio ;|  0.1088 0.1020 .
. h
Reeidues ! 0.04094 + 10.004633 | -0.04089 - i0.0049D
! £, Frequency 15.59 50,36
H {rad/vee)
; Damping Rmtie 0.1092 0.1020
RNasnidues 0.04474 - 10.01738 0.01863 - i0,003211
- i
TABLE 3
Poles asd Residues of the Velocity Tramsfer Functiame
{3rd Stage Damaga)
e S R . .
oL lat Mode 2ud Mode
*l Frequency 13.85% 37.88
(rad/eec)
Dsmping Ratio e.1109 0.1359

0.039%58 + 10.004973 ! 0.03944 - 10.006832

|

15.85 i 37.87

(rad/eec) !
I

!

Damping Ratio 0.1103 0.1349

Residues

0.04697 + 10.004429

|
i I

0.01643 ~ 40.004332

.
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FIGURE 3

The displacement time responses of the analog com-
puter system were obtained with initial conditions
XI(O) = -0.80 ft, x,(o) = 0.80 ft. Two forcing condi-
tions were studied:” one with f, = 611.6 1b applied to
mass |, the other with f, = lZZ%.& 1b applied to mass
2. A typical response is shown in Fig. 5. Using the
time domain eigenvalue retrieving program, the fre-
quencies, dampings and amplitudes of the vibration
modes contained in the time responses were calculated.
The resolved values corresponding to each of the three
damage stages are listed in tables 4, 5 and 6.

The resolved eigenvalues and eigenvectors were
used to construct the normalized damping and stiffness
matrices [C], [K], which are defined as the ratio of
the actual damping and stiffness matrices to the mass
matrices, i.e, -1
g-ule, ©=n'k

The calculated [¢], [%] and their corresponding
theoretical values for the three stages of damage are
listed below in Table 7.

The results demonstrate that the system identifi-
cation technique using the time algorithm also accu-
rately retrieves system's characteristic matrices, and
changes simulating damage are detectable.
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FIGURE 4




FIGURE 5

DISPLACEMENT TIME RESPONSE AT MASS 1,
WITH CONSTANT FORCE AT MASS 1

TABLE &4

Frequencies, Dampings and Amplitudes of the

Time Responses

(lst Stage Damage)

: Conditions

1

1st mode
:Freq. (Hz), Dmmping ratie,
" Amplitudes

2nd wode

Freq. ‘(Hs), Daaping Ratio,
Amplitudes

2,(0) = -0.80 ft

:25(0) = 40.80 fr

‘£ = 611.6 1b
Txp(e)
z5(t)

2,(0) « ~0.20 fr
(0) = +0.80 £t
£y = 1322.4 1b
% (¢)
3y{t)

T2.52 0.1135 0,07164
2.49  0.1102 0.07285%
[ 2.48  0.1118B  =0.1370
2.48  0.1108  -0.1457
TABLE 5

B.04 0.1039 -1.02%
7.99 0.1033 0.4597
8.00 0.1029 -0.9267
8.00 0.1031 0.4256

Frequencies, Dampings and Amplitudes of the
Time Response

Couditious

let mode

Freq. (Bz), Dampisg ratio,
! Amplituden

x1(0) = ~0.80 fe
x,(0) = 40.80 fe
£ = 611.6 1b
xp(t)

x5(t)

2,(0) = -0.80 f¢
x,(0) = +0.80 ft
f) = 1222.4 1b
x ()

1,(2)

s
t e
i
b

" 2.48

0.1352 0.08358

2.46 0.1846 0.08270
. 2,46 0.1827 -0.1293
P 2.45 0.1843  -0,1456

(2nd Stage Damage)

'

———e

28d wode
Freq. (Bz), Damping Batio,
Amplitudes

7.9 0.1558 -1.0148
7.95 0.1562 0.4461

|
7.94 0.1555 -0.9344
7.97 0.1531 0.4066

TABLE 6

Frequencies, Dampings and Amplitudes of the
Time Responses

(3rd Stage Damage)

ist mode 2ud mode
Conditions Freq. (Hz), Damping ratio, Freq. (Bz), Demping Ratio,
Amplitudes Amplitudes
21(0) = -0.80 ft )
' 22(0) = +0.80 £¢
{g] = 611.6 1b
: x1{t) 2.47 0.1135 0.1006 5.98 0.1364  -1,0381
rx2(t) ? 2.48 0.1111 0.11167 5.99 0.1349 0.4348
|
!11(0) - -0.80 ft'
3,(0) = +0.80 £t
(€5 = 1222.4 1b
L xpe L2 0.1237 ~0.1086 5.98 0.1359  -0.90167
gt:(t) . 2.46 - 0.1138 «0.1276 . 5.97 Q.1372 0.3837
TABLE 7
Normalized damping and stiffness matrices
P e e e
T L ctheo. x:heu.
let stage : [ 7.73  -4.57] [ 1865  -1524 7.5 -5 1875 ~1500
damage
|~2.52 6.09 ~732 933.8] |-2.% 6.25J ~750 937-SJ
2ad Stage 15.6 ~3.98 1873 «1515 |- |15 - -5 1875 -1500
damage
-2.53 5.66 ~738 932.6; {-2.5- §.25} |-750 937.5
Izd stage 7.1 58] {119 <156 ) [ .5 -5 1125 -7350
damage .
~2.42 6.36 =369 560.2] |-2,5 6.25{~375 562.%

6. THE CANTILEVER BEAM EXPERIMENT

A cantilever beam was tested to verify that the
system identification technique described in the pre-

vious section is equally effective for a
syvstem,

accelerometers were attached to the beam
equally spaced positions.

cont inuous

The beam, as shown in Figure 6, was excited
with single and random impact near the end.

Six
at six

The transfer functions

from the impact position to any accelerometer position

was
and
the
and
transform of the signals was performed.

Nicolet FFT analyzer.

The instan-

taneous transfer functions were obtained by dividing

the two spectra.

Final transfer function was ob-

tained by averaging over a series of instantaneous

transfer functions.
system. The first damage scenario was a
depth saw cut into the edge of the beam.

Damages were introduced to the

one~-fourth
Transfer

functions corresponding to the 3 damage scenario at a

representative position are shown in Figure 7.

Close

examination of the results indicates that the model
frequency shifts depend on the depth of the saw cut

simulating a crack.

In future research these transfer functions will
be used as inputs into the frequency domain curve
fitting program from which eigenvalues and eigenvec-

tors will be calculated.

Then the system's [M]{c2[k]

matrices will be reconstructed from these eigenvalues
and eigenvectors using the developed system identifi-

cation technique.

It is expected that the results

will siown that the crack depth has a detectable

effect on the identified system parameters.

researc
tion with observed changes.

Future

obtained by feeding the output acceleration signal
input forcing function into a spectrum analyzer:
In the analyzer, the input
output signidls were digitized and the Fast Fourier

will deal with correlating crackage and loca-
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STRUCTURAL RESPONSE MLASUREMENT OF AN OFFCHORE
PLATFORM MODEL ON SOIL FOUNDATION.

In this section, we apply the eigenvalue retriev-
ing algorithms developed in previous sections to Modes FIT
determine the natural frequencies and damping of

Randow Decrement

1:13.8 scale model of an offshore platform. The model Fres. (Re) ¥re. (He) Pempleg Matio
structure consists of four legs made of 2 inch dia- . 1 1L.875 11.89% 0.002400
meter steel pipes, a 1.5 inch thick top plate and 2 20,25 20,318 0.005972
cross bars made of 3/4 inch steel pipes. It has six 3 30.50 30.706 . 0.009893
levels, labled as the top level and levels 1 through
5, with elevationof 141", 106", 84", 61", 35" and 7" ¢ 3350 36.217 0-010822
respectively. The base has dimensions 57" x 57" and 5 4373 44,138 0.007472
the top plate 38" x 38". The structure was mounted
on a foundation consisting of four piles made of
steel pipes, each seven feet long and embedded in the
soil of the earth ground, as shown in Fig. 8. % TABLF 8 IDENTIFTED MODAL TREQUENCIES AND
DAMPINGS OF THE OFFSHORE PLATFORM
A hammer was used to excite the structure with a MODEL -
single impact on one of the legs, along the axis
of a horizontal connecting bar in level 1. At the
other end of the connecting bar was attached an
accelerometer which measured the response. The ;
forcing function and the response were recorded and AR
analvzed with the time domain eigenvalue retrieving . ) \\,

technique.  The frequencies and dampings of the lowest
five dominant modes are shown in Table 8.



In order to acquire information concerning the
pattern of the structural responses due to the type
and severeness of damage as well as for the identifi- 1.
cation of damage locations, a series of systematic
measurements and tests were conducted. Twenty-four
accelerometers, arranged in four different directions, 2.
were attached to the four legs of the model. Dynamic
responses at these 24 positions were tape recorded for
various test conditions. The test conditions con-
sisted of four different forcing functions and three
damage scenarios. A hammer was set up that provided 3.
single and random impact forces at two positions along
the cross bar between positions 15 and 16. An elec-
tro-mechanical shaker was also set up that provided
random forcing functions in two different directions
to the leg at the middle of positions 3 and 5. Two 4.
saw cuts were done at the middle of the cross bar
between positions 7 and 8. The depth of the first cut
was half of the diameter of the cross bar. The second
cut completely separated the cross bar into two sec- 5.
tions.

The recorded response signals will be extensively
analyzed with the developed system identification
technique in the continuing research effort. 6.

8. CONCLUSIONS

The feasibilityv of using structural response data
from a known vrandom input to completely characterize
the Svstem Parameters, [M1[CI[K], has been demonstrat-
ed for discrete spring-mass-dashpot systems. Both the
frequency domain curve fitting and the time domain 8.
curve fitting algorithms can give satisfactory eigen-
values and eigenvectors of the system. When the sys-
tem's parameters are gradually changed the present
identification technique is able to resolve the
difference and thus show the feasibility of tracking 9.
progressive fracture of structural systems.

Preliminary research on a continuous system such
as a cantilever beam with induced cracks (saw cuts)
and excited by a random input, indicates that the
crack size manifests itself by detecable changes in 10.
the transfer function at the higher frequency modes.
Analvses of the response data by the System Identifi-
cation Technique gives promise that the effects of the
crack size can be detected by changes in the [M][C]
{K] matrices. There remains a question of how many
degrees of freedom the [H:[C}[K] mat rices should have
to represent a continuous svstem. When the number of
degrees of freedom is large, difficulties will arise
coacerning the computation accuracy.

I1.
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